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Theory and numerical simulations are used to investigate the concentration
fluctuations and the microstructure in dilute sedimenting suspensions of orientable
and deformable particles at zero Reynolds number. The case of orientable particles
is studied using prolate and oblate spheroids, while viscous droplets in the small
deformation regime illustrate the effects of deformability. An efficient method based
on a point-particle approximation and on smooth localized force representations is
implemented to simulate full-scale suspensions with both periodic and slip boundaries,
where the latter are used to qualitatively reproduce the effects of horizontal walls.
The concentration instability predicted theoretically for suspensions of spheroids is
captured in the simulations, and we find that including horizontal walls provides
a mechanism for wavenumber selection, in contrast to periodic systems in which
the longest wavelength set by the size of the container dominates. A theoretical
model for the case of slightly deformable particles is developed, and a linear stability
analysis shows that such suspensions are also unstable to concentration fluctuations
under sedimentation. In the absence of diffusion, the model predicts that density
fluctuations are equally unstable at all wavelengths, but we show that diffusion,
whether Brownian or hydrodynamic, should damp high-wavenumber fluctuations.
Simulations are also performed for deformable particles, and again an instability
is observed that shows a similar mechanism for the wavenumber selection in finite
containers. Our results demonstrate that all sedimentation processes of orientable or
deformable particles are subject to spontaneous concentration inhomogeneities, which
control the sedimentation rates in these systems.

1. Introduction
Although conceptually simple, the steady sedimentation of a dilute dispersion of

particles in a liquid at low Reynolds number remains an unresolved problem of
non-equilibrium statistical mechanics (Ramaswamy 2001). Even in the simplest case
of a random dilute dispersion of spheres, a simple physical argument suggests that
the velocity variance should diverge, growing unbounded with the linear dimension
of the sedimenting system: 〈�v2〉 ∼ L (Caflisch & Luke 1985; Hinch 1987). Since
the work of Caflisch & Luke numerous experiments have tried to test this scaling,
but typically manifest a saturation of the velocity fluctuations in contrast with the
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theoretical prediction (Nicolai and Guazzelli 1995; Segrè, Herbolzheimer & Chaikin
1997; Bergougnoux et al. 2003). Precise particle image velocimetry measurements
by Guazzelli (2001) in fact showed the following: during the early period after
the cessation of mixing, large recirculation vortices of the size of the container are
observed, confirming the Caflisch & Luke argument, but these quickly decay and give
way to smaller less intense vortices and velocity fluctuations that are independent of
the container dimensions.

Several theoretical explanations have been proposed to resolve this contradiction,
most of which relax one of the fundamental assumptions of the original argument,
namely homogeneity. The close relationship between the microstructural arrangement
of the particles in the suspension and the velocity fluctuations was first highlighted
by Koch & Shaqfeh (1991), who related the amplitude of the velocity fluctuations
to the structure factor of the suspension, which is the Fourier transform of the
pair probability function. Koch & Shaqfeh then argued that a specific form of the
pair probability function, in which there is a net deficit of neighbouring particles in
the vicinity of each particle, would lead to a screening of the velocity disturbance
as a result of three-particle hydrodynamic interactions, and is therefore a potential
mechanism for the saturation of the velocity fluctuations. This mechanism, however,
has not been verified, and is not consistent with more recent results from numerical
simulations, which do show a decay of the velocity fluctuations (e.g. Ladd 2002;
Nguyen & Ladd 2004, 2005; Mucha et al. 2004).

The key idea that microstructural changes occurring during sedimentation are
responsible for the decay of the velocity fluctuations is supported by experiments
by Lei, Ackerson & Tong (2001), which showed the suppression of random number
density fluctuations during sedimentation. Two mechanisms have been suggested for
this suppression. Following an original idea by Luke (2000), it has been argued that
a small vertical stratification in the suspension may be responsible for the decay
(Mucha & Brenner 2003; Mucha et al. 2004). More precisely, Mucha et al. suggest
that in thin cells in which stratification is weak, the velocity fluctuations scale with
the thin dimension, whereas in larger cells, stratification is more significant and
causes the decay of the fluctuations. Experiments by the same authors seemed to
confirm this mechanism (Tee et al. 2002; Mucha et al. 2004), although such a strong
stratification was not observed in other studies (Bergougnoux et al. 2003), suggesting
that polydispersity in the size of the particles may have been a factor. Recent lattice-
Boltzmann simulations by Nguyen & Ladd (2004, 2005) also captured the suppression
of the number density fluctuations, but did not show any significant broadening of
the front.

A second explanation was proposed by Hinch (1987): in a finite cell with a bottom
wall, random density fluctuations create strong convection currents spanning the width
of the cell, which should lead to a homogenization and may remove the horizontal fluc-
tuations in the number density. If this process continues down to the interparticle
separation length scale, the final velocity fluctuations may no longer depend on
the system dimensions. The mechanism speculated by Hinch is supported by the
observations of Guazzelli (2001) described previously, in which large recirculation
cells in the initial instants of the experiments are observed to decay. The importance
of the role of the bottom wall was also emphasized by Ladd using lattice-Boltzmann
simulations: in periodic systems, Ladd observes the divergence of the velocity fluctua-
tions without any microstructural changes (Ladd 1996), whereas in systems bounded
by horizontal walls the velocity variance is found to saturate and the horizontal density
fluctuations are strongly suppressed (Ladd 2002; Nguyen & Ladd 2004, 2005).
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The cases of non-spherical or non-rigid particles, which we address in this paper,
have received much less attention in the past, in spite of their common occurrence
both in natural phenomena and industrial applications. One illustrative example in
which both anisotropy and deformability play a significant role is the sedimentation
of red blood cells, which is a widely used tool for the screening of diseases (Reinhart,
Singh & Werner 1989). Other examples are as diverse as the separation of biological
macromolecules by centrifugation, the fabrication of fibre-reinforced materials, or the
treatment of waste materials.

It is unclear a priori how anisotropy or deformability will influence the physical
mechanism described above, by which the suppression of number density fluctuations
leads to a decay of the velocity variance in suspensions of spheres. The fundamental
difference between anisotropic and isotropic particles is that the former orient in
flow, and, depending on their orientation, can migrate in the directions perpendicular
to gravity. Koch & Shaqfeh (1989) first studied this coupling between the velocity
fluctuations and the anisotropic mobility of the particles for dispersions of spheroids.
They modelled the suspension with continuum variables, and using a linear stability
analysis they showed that small density fluctuations at low wavenumbers should
amplify. They proposed a simple physical mechanism: the disturbance flow induced
by the density fluctuations causes the particles to orient in such a way that they
migrate towards the regions of higher particle density. Based on a linearized model
for an unbounded fluid, the theory of Koch & Shaqfeh (1989) predicted that the
longest wavelengths should grow the fastest.

The sedimentation of fibre suspensions, which behave like high-aspect-ratio
spheroids, has been the subject of a few experimental studies, some of which
confirmed the instability predicted by Koch & Shaqfeh (1989). Kumar & Ramarao
(1991) reported the formation of large floc-like structures in dilute suspensions,
settling at larger velocities; at higher concentrations, interaction between the flocs
was observed to cause velocity hindrance. Later, Turney et al. (1995) used magnetic
resonance imaging to determine the mean sedimentation velocity in concentrated
suspensions of rodlike particles; they reported velocity hindrance, but did not provide
any information on the homogeneity of the bulk.

Herzhaft et al. (1996) and Herzhaft & Guazzelli (1999) studied the sedimentation
of fibres in the dilute and semi-dilute regimes, in which the instability can be expected
to be the strongest. They adapted a particle-tracking technique previously used for
sphere suspensions (Ham & Homsy 1988; Nicolai et al. 1995), in which the position,
orientation and velocity of a few silver-coated particles are measured, while the
remainder of the particles are made invisible by matching their index of refraction
with the index of the solvent. They observed that the particles strongly oriented in the
direction of gravity, with occasional flipping between the two vertical orientations.
They also reported an increase in the mean velocity in the dilute regime beyond the
maximum velocity of an isolated vertical fibre, followed by velocity hindrance in the
semi-dilute regime. The velocity fluctuations measured were typically very large, up to
one order of magnitude larger than the mean velocity in the semi-dilute regime. While
no systematic investigation of the microstructure was undertaken, snapshots of the
suspension suggested that the particles gathered to form dense clusters or streamers
slightly elongated in the direction of gravity and surrounded by clarified fluid; the
size of the clusters, although not measured precisely, was estimated to be of the order
of a few particle lengths.

The sedimentation of axisymmetric particles was also tackled in a few
computational studies, with varying degrees of approximation. Mackaplow &
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Shaqfeh (1998) performed dynamic simulations of fibre sedimentation at zero
Reynolds number with periodic boundary conditions, in which they approximated
the disturbance of a given particle on the fluid by a point force. Although very
simple, their model captured all the salient features of the instability: the fibres
were observed to converge towards one dense streamer and to orient vertically.
The orientation distributions were found to reach a steady state, the mean velocity,
however, kept increasing and did not show any signs of saturation. Butler & Shaqfeh
(2002) devised a more sophisticated method in which the fibres were represented
by line distributions of point forces, which were linearized to capture correctly the
total force, total torque and stresslet on each particle; they also included close
particle hydrodynamic interactions through lubrication forces, and excluded volume
interactions using short-range repulsive forces. Their simulations greatly improved
on the results of Mackaplow & Shaqfeh (1998), and reasonable agreement with the
experimental data of Herzhaft & Guazzelli (1999) was found using very elongated
boxes in the direction of gravity. In particular, such boxes allowed the mean velocity
to reach a steady state. The effects of inertia were also considered by Kuusela
and coworkers, who performed simulations of the sedimentation of spheroids at
small but finite Reynolds number (Kuusela, Höfler & Schwarzer 2001; Kuusela,
Lahtinen & Ala-Nissila 2003). The principal effect of inertia was on the orientation
distributions, which showed a preferential alignment in the horizontal direction in
very dilute dispersions, followed by a transition towards a vertical alignment at higher
concentrations. The mean velocities showed qualitative agreement with the inertialess
experiments of Herzhaft & Guazzelli (1999); clustering was reported, although no
further information was given on the structure of the suspension.

In an attempt to study more precisely the microstructure in suspensions of
sedimenting fibres, we recently improved the simulation method of Butler & Shaqfeh
(2002) by implementing a smooth particle-mesh Ewald algorithm, allowing the efficient
computation of the far-field hydrodynamic interactions (Saintillan, Darve & Shaqfeh
2005). This fast algorithm allowed us to simulate up to 512 particles, providing new
insight into the large-scale collective dynamics and their coupling to the disturbance
flow. In particular, in our periodic systems we found that the formation of dense
clusters was directly linked to the initial disturbance flow in the fluid, which is typically
dominated by low-wavenumber fluctuations, therefore resulting in the formation of
a unique streamer in most simulations. We speculated that the presence of a bottom
wall may play a role in selecting a wavelength for the instability, by breaking the initial
low-wavenumber fluctuations in the same way as is observed in sphere suspensions
(Guazzelli 2001; Ladd 2002). This mechanism remained an open question: while
the presence of a bottom wall may indeed lead to a homogenization, and result
in a decay of the large-scale fluctuations, the instability, on the contrary, feeds the
inhomogeneities; the balance between these two effects is difficult to predict and is
addressed in this paper. Our recent work also showed the difficulty in reaching a
steady-state simulation in large periodic systems: even after the instability had picked
a wavelength, streamers were observed to become denser and denser, resulting in
the steady increase of the mean velocity. The assumption that a steady state indeed
exists, which is the basis for simulations with periodic boundary conditions, therefore
deserves closer attention.

Deformable particles such as drops or bubbles share qualitative similarities with
orientable particles, and there has been recent evidence suggesting that an instability
similar to that predicted by Koch & Shaqfeh (1989) for spheroids may also occur
in such systems. This was first suggested by Manga & Stone (1995), who pointed
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out that the deformation of rising bubbles as a result of hydrodynamic interactions
should result in a migration towards the regions of high density. They illustrated this
mechanism using a similar picture to that in Koch & Shaqfeh (1989), but made no
further attempt to study the instability. In spite of the clear analogy between the
two situations, the instability for drops, if it exists, is slightly more complex as the
deformations leading to the lateral migration are themselves induced by the density
fluctuations through the disturbance field. To our knowledge, the instability for drops
has never been reported in an experiment, but a few computational studies seem to
confirm its existence. Zinchenko & Davis (2000, 2003) performed boundary integral
simulations of concentrated suspensions of deformable drops under sedimentation.
Starting from random configurations of spherical drops, they observed that the drops
acquired prolate shapes and oriented in the direction of gravity, resulting in an
increase of the sedimentation rate. Again clustering was observed, but no detailed
study of the suspension structure was performed.

In this work we study the microstructure and concentration fluctuations in
sedimenting suspensions of orientable and deformable particles, focusing on the
coupling between the large-scale fluctuations in the concentration and velocity fields
and on the influence of solid boundaries. In particular, we wish to determine whether a
steady-state structure can be achieved in such suspensions and identify the mechanisms
affecting this structure. We investigate two different types of particle: rigid spheroids
are used as prototypes of orientable particles, whereas viscous drops within the small
deformation theory (Cox 1969; Haber & Hetsroni 1971) are used to illustrate the case
of deformable particles. The paper is organized as follows. In § 2, we treat the case of
orientable particles: an efficient method is described to simulate realistic-size systems
of sedimenting spheroids, both in periodic and non-periodic domains. Results are
presented on the suspension microstructure and on velocity and orientation statistics.
The case of deformable particles is addressed in § 3: we first develop a model for
such suspensions and perform a linear stability analysis to show that concentration
fluctuations are indeed unstable; the simulation method described in § 2 is then
adapted to the case of slightly deformed drops and is used to investigate the pattern
formation. The results are summarized in § 4.

2. Orientable particles
2.1. Method of simulation

Motivated by the conclusions of our previous work on suspensions of rigid fibres
(Saintillan et al. 2005), we have developed an efficient method allowing the simulation
of suspensions of realistic sizes in both periodic and bounded geometries. The method
is based on a point-force approximation which is analogous to the original model of
Koch & Shaqfeh (1989) and to the point-fibre simulations of Mackaplow & Shaqfeh
(1998). However, the disturbance velocity is calculated numerically from the Stokes
equations using smooth localized force representations in a similar manner as in the
force-coupling method of Lomholt & Maxey (2003); this approximate method allows
for a very efficient calculation of the velocities in various boundary conditions while
removing the singularities from the disturbance field.

2.1.1. Dynamic equations

We consider a system of N spheroids of aspect ratio A in a box of
dimensions Lx × Ly × Lz, where gravity points in the vertical direction: g = −g ẑ.
The configuration of a given particle α = 1, . . . , N is entirely determined by the
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position xα of its centre of mass and by a unit vector pα aligned with its major axis.
In the dilute limit, the disturbance velocity induced by the motion of the particles
varies over length scales that are much larger than the size of a particle, so that
locally the flow field experienced by a given spheroid can be approximated as:

u(x) ≈ u(xα) + ∇u(xα) · (x − xα) + · · · for |x − xα| � L, (2.1)

where L is the characteristic length for the variation of the velocity. Typically, this
characteristic length is the mean interparticle distance L = n−1/3, where n is the number
density in the suspension. Under this approximation, the translational velocity of a
particle is calculated as the sum of its settling velocity U s in orientation pα and of
the disturbance velocity u evaluated at its centre of mass:

ẋα = U s( pα) + u(xα). (2.2)

The settling velocity in a pure fluid is the product of the particle mobility by the
gravity force acting upon the particle, and for a spheroid is written as

U s( pα) =
1

8πµl
(β0I + β1 pα pα) · F. (2.3)

µ is the viscosity of the solvent, l is the length of the major axis of a particle, and the
gravity force is F = �ρVp g where �ρ is the relative density and Vp = πl3/6A2 is the
volume of a particle. β0 and β1 are dimensionless functions of the aspect ratio defined
for arbitrary A and can be found elsewhere (see for instance Happel & Brenner 1965,
or Koch & Shaqfeh 1989). The rotational motion of the particle is described using
Jeffery’s equation (Jeffery 1922):

ṗα = (I − pα pα) ·
(

A2 − 1

A2 + 1
E(xα) + Ω(xα)

)
· pα, (2.4)

in which E(x) = (∇u(x) + (∇u(x))T )/2 and Ω(x) = (∇u(x) − (∇u(x))T )/2 denote the
disturbance rate of strain and rate of rotation tensors, respectively. Provided that the
disturbance velocity u(x) and its gradient ∇u(x) can be calculated at the centre of
mass of each particle, we can determine the motion of the particles by time integration
of the dynamic equations (2.2) and (2.4).

2.1.2. Hydrodynamic interactions

Far-field hydrodynamic interactions between the suspended particles are captured
through the disturbance velocity field. If the suspension is dilute, the effect of a
particle on the fluid is to first order a point force equal to the gravitational force F
and applied at its centre of mass. The disturbance velocity can therefore be calculated
as a solution of the Stokes equations:

−µ∇2u + ∇p = f , ∇ · u = 0, (2.5)

with a body force equal to:

f (x) =

N∑
α=1

Fδ(x − xα), (2.6)

where δ(x) is the three-dimensional Dirac delta function.
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The solution of equation (2.5) in an infinite fluid is a sum of point-force singularities
or Stokeslets:

u(x) =
1

8πµ

N∑
α=1

(
I

|x − xα| +
(x − xα)(x − xα)

|x − xα|3

)
· F, (2.7)

and the solution in a periodic domain is also known (Hasimoto 1959). Equation
(2.7) and its periodic counterpart suffer from some limitations: the solution indeed
grows unbounded near the centre of mass of the particles as a consequence of the
point-force approximation which is an asymptotic result valid far from the particle
surface. Furthermore, the calculation of this disturbance velocity at each particle
location is an expensive operation, scaling with the square of the number of particles.
Fast algorithms have been devised in the past to reduce the cost of this calculation
(Sierou & Brady 2001; Saintillan et al. 2005), but were based on periodic boundary
conditions and typically only allowed the simulation of a few hundred to a few
thousand particles.

Here we present a method for the evaluation of the disturbance velocity which
completely neglects close particle interactions by smoothing the disturbance field at
short distances. The singularity in the point-force solution arises from the Dirac delta
functions in the forcing term equation (2.6). Instead of calculating the exact flow field
induced by these point singularities, we use a Cartesian grid and assign the point
forces exerted by the particles on the fluid to the neighbouring mesh points xi:

f (xi) =

N∑
α=1

FM(xi − xα). (2.8)

M(x) is the assigment function and depends on the nature and the order of the
interpolation method used. The choice of M(x) is somewhat arbitrary, provided that
it satisfies a few basic conditions. We require that the sum of M(xi) over all the
grid points be one for the total force to be conserved, and that M have spherical
symmetry. M should also be small beyond a certain cutoff radius for the force to
remain local; ideally (although not necessarily) M should have a compact support. A
good class of functions satisfying these properties are Cardinal B-splines (Schoenberg
1973; Hockney & Eastwood 1981; Deserno & Holm 1997). Other choices are possible:
Maxey and coworkers for instance in their somewhat similar force-coupling method
use Gaussian interpolants, which do not have a compact support (Maxey & Patel
2001; Lomholt & Maxey 2003).

2.1.3. Solution of the Stokes equations

Equation (2.8) defines a body force field on the Cartesian grid and can be substituted
into the Stokes equations, which are then solved numerically with appropriate
boundary conditions. In this work, two types of boundary condition are considered.
One of our objectives is to investigate the effects of solid boundaries, and to this
end we follow the approach of Bergougnoux et al. (2003) and seek a solution of the
Stokes equations satisfying a tangential flow boundary condition (i.e. ‘slip’, but no
penetration) on the walls of the container. While this differs from the exact no-slip
boundary condition for viscous flow, it allows for a very efficient solution while
capturing some effects of the walls; in particular, the no-flux boundary condition
at the bottom wall will lead to large-scale recirculation in the lateral direction and
homogenization, both of which have been suggested as potential mechanisms for the
decay of the fluctuations in sphere suspensions (Ladd 2002; Bergougnoux et al. 2003).
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The effects of the tangential flow along the walls are investigated more precisely in
the Appendix, where the present solution is compared to a more accurate solution
satisfying the no-slip boundary condition on two of the sidewalls (Mucha et al.
2004); in particular, tangential flow along the walls is shown to result in slightly
overestimated velocity fluctuations.

We first observe that f (x) = f (x) ẑ, and transform the scalar-valued function f (x)
as follows using sine and cosine series:

f (x) =
∑

k

f̂ (k) cos

(
πkxx

Lx

)
cos

(
πkyy

Ly

)
sin

(
πkzz

Lz

)
, (2.9)

in which the wavevector k in an orthogonal lattice is defined as

k =
kx

Lx

x̂ +
ky

Ly

ŷ +
kz

Lz

ẑ, (2.10)

with kx , ky and kz integers. We then seek a solution for the velocity written as:

u(x) =
∑

k

û(k) ×




kxkz

LxLz

sin

(
πkxx

Lx

)
cos

(
πkyy

Ly

)
cos

(
πkzz

Lz

)
,

kykz

LyLz

cos

(
πkxx

Lx

)
sin

(
πkyy

Ly

)
cos

(
πkzz

Lz

)
,

−
(

k2
x

L2
x

+
k2

y

L2
y

)
cos

(
πkxx

Lx

)
cos

(
πkyy

Ly

)
sin

(
πkzz

Lz

)
.

(2.11)

Equation (2.11) automatically satisfies continuity and the tangential flow boundary
condition. Substituting equations (2.9) and (2.11) into the Stokes equations (2.5) allows
us to solve for the Fourier coefficients of the velocity:

û(k) =
f̂ (k)

π2

[ (
kx

Lx

)2

+

(
ky

Ly

)2

+

(
kz

Lz

)2 ]2
. (2.12)

The Fourier series expansions (2.9) and (2.11) can be truncated in each space
dimension beyond a maximum wavenumber Kx , Ky , Kz, which should be chosen
so as to make the shortest resolved wavelength shorter than the mean interparticle
distance; the precise effects of the level of truncation are discussed in the Appendix.
The velocity field and its gradient are then easily solved for using fast sine and cosine
series algorithms.

For the sake of comparison we also consider periodic systems, and solve the Stokes
equations spectrally. The velocity field is expanded as a Fourier series

u(x) =
∑

k

û(k) exp(−2πik · x). (2.13)

Hasimoto (1959) solved for the Fourier coefficients of the velocity:

û(k) = − 1

4π2µτ0k2

(
I − kk

k2

)
· f̂ (k), (2.14)

where f̂ (k) are the Fourier coefficients of the force distribution. As in the periodic
case, the series are truncated at a finite number of terms, and the fast Fourier
transform algorithm is used for good efficiency.
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It should be noted that in the method described above, each particle feels its own
disturbance, since the force field (equation (2.8)) used in the Stokes equations includes
a contribution from the particle itself. Further adding this self-disturbance to the
free-space sedimentation velocity U s( pα) in equation (2.2) would lead to a systematic
overestimation of the sedimentation rates. In the simulations, the disturbance velocity
u(x) felt by each particle was therefore corrected by subtracting this self-contribution,
which can be calculated independently on the grid using a similar method.

In all of the following, distances are made dimensionless with the length lc = l

of the major axis of a particle, velocities with the sedimentation speed uc = (β0 +
β1)�ρVpg/8πµl of an isolated vertical spheroid in an infinite fluid, and times with
the time tc = lc/uc for an isolated vertical spheroid to sediment over the length of
its major axis. In all simulations, third-order B-spline interpolation was used for the
calculation of the body force field, and the number of Fourier modes was chosen so
as to resolve the velocity field over distances of the order of half a particle length. The
time integration was performed using a fourth-order Runge–Kutta scheme. For the
most part, we treat the case of prolate spheroids (‘fibres’), for which comparison with
experimental data is possible; the case of oblate particles (‘disks’) is briefly addressed
in § 2.7. Unless otherwise stated, the results shown are for non-periodic systems with
slip boundary conditions.

2.2. Particle distribution and concentration fluctuations

Figure 1(a) shows a typical particle distribution, obtained for a simulation of 29 702
spheroids of aspect ratio A = 15 in a box of dimensions Lx = 32, Ly = 12, Lz = 180
(particle volume fraction φ = 0.1%). The initial condition is a homogeneous dispersion
with random positions and orientations. As the sedimentation proceeds, a broad
suspension front forms at the interface with the clear fluid and keeps growing in
time. Careful observation of the bulk shows that the suspension does not remain
homogeneous: particles instead tend to aggregate into clusters as predicted by Koch
& Shaqfeh (1989). Particles are also observed to rotate and to orient preferentially
in the vertical direction, with a strong correlation between centre-of-mass position
and orientation; while the orientation remains random inside the dense clusters, the
alignment in the vertical direction is much clearer in their periphery, where we will see
that a strong vertical shear exists (e.g. § 2.4). We focus our analysis on the clustering
phenomenon, and try to define measures for the concentration fluctuations in the
bulk.

A good way of visualizing the inhomogeneities consists in considering the time
trace over a short time interval of the smooth concentration field obtained by B-
spline interpolation as explained in § 2.1.2:

c̄(x, t) =
1

�t

∫ t+�t

t

N∑
α=1

M(x − xα(t ′)) dt ′, (2.15)

where a small value of the order of a few Stokes units is chosen for �t (�t = 4 in
the results presented here). The advantage of this measure is that it allows us to
visualize both the concentration fluctuations and the correlation in the motion of
the particles. Figure 1(b) shows c̄(x, t) in the vertical mid-plane y = Ly/2 at different
times t over the course of the simulation of figure 1(a). In the initial instants, weak
density fluctuations are present owing to the random nature of the initial distribution.
A relatively strong flow is observed away from the walls at the centre of the cell, with
recirculation vortices on the sides. This strong initial streamer spans the entire box
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Figure 1. (a) Particle distribution at t = 80 for a simulation of 29 702 spheroids of aspect
ratio A = 15 in a box of dimensions Lx = 32, Ly = 12, Lz = 180 (volume fraction φ = 0.1%). (b)
Time trace of the concentration field over a short interval �t = 4 in the mid-plane y = Ly/2,
at various stages of the sedimentation (cf. equation (2.15)).

width, in agreement with the scaling of Hinch (1987), according to which velocity
fluctuations in a random sedimenting suspension occur over length scales comparable
to the width of the container. The streamer also spans the entire height of the box,
in constrast to the circular vortical structures that are typically observed in sphere
sedimentation (Guazzelli 2001); this very long autocorrelation in the vertical direction
will be further explored in § 2.4. At later times (t = 40 to 80), this initial streamer
is observed to break up into smaller structures; yet the concentration fluctuations
intensify as a result of the Koch & Shaqfeh instability, leading to the formation of
dense vertical streaks. Several streaks can be observed in the lateral direction (up to
three or four at t = 40), suggesting that a wavenumber selection may be occurring.
The inhomogeneities are found to persist up until the arrival of the sedimentation
front, in spite of the decay of the velocity fluctuations in the fluid (see § 2.5). As the
concentration in the suspension finally decreases owing to stratification (figure 3), the
concentration fluctuations gradually become less intense (t = 120).

The fluctuations in the bulk can be measured more quantitatively by calculating
the instantaneous Fourier transform of the concentration field over a section of the
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Figure 2. Time evolution of the Fourier coefficients of the concentration field for a simulation
of 158 411 spheroids of aspect ratio A = 15 in a box of dimensions Lx = 32, Ly = 32, Lz = 180
(volume fraction φ = 0.2%), in both (a) non-periodic and (b) periodic boundary conditions.
The spectra were calculated over a subsection of the container: 20 <z < 52, and were averaged
over four simulations. The lower plots show the evolution of the mean volume fraction in the
section in which the spectra were obtained.

box:

ĉ(k, t) =

∫
V ′

c(x, t) exp(2πik · x) dx. (2.16)

In practice, c(x, t) is obtained by binning the particle positions, and ĉ(k, t) is calculated
as a discrete Fourier transform. Figure 2 shows the time evolution of the magnitude of
a few Fourier coefficients, obtained for a simulation in a box of dimensions Lx = 32,
Ly = 32, Lz = 180 at a volume fraction of φ = 0.2%, in both non-periodic and periodic
boundary conditions. In the periodic case (figure 2b), the longest wavelength in the
horizontal direction k = (1, 0, 0) clearly dominates the spectrum, which corresponds to
the formation of one main streamer (here each component of k is made dimensionless
with the inverse size of the box in the corresponding direction). This is in agreement
with the linear stability analysis of Koch & Shaqfeh (1989) which predicts that the
shortest wavenumber (longest wave) should grow the fastest, and was also reported
in previous simulations of periodic systems (Mackaplow & Shaqfeh 1998; Butler &
Shaqfeh 2002; Saintillan et al. 2005). The behaviour is quite different in the non-
periodic case (figure 2a), where the two wavevectors k = (2, 0, 0) and k = (3, 0, 0) are
observed to grow and dominate the spectrum, corresponding to two or three dense
streamers in the lateral direction. This is consistent with figure 1(a) where in a finite
box several vertical streaks were shown to appear in the concentration field. After
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Figure 3. Cross-section averaged concentration profile in the vertical direction at various
times during the sedimentation of a suspension of 148 510 spheroids of aspect ratio A = 15 in
a box of dimensions Lx = 32, Ly = 12, Lz = 180 (volume fraction φ = 0.5%). The concentration
profile is normalized by its average value 〈c〉.

about 100 time units, the arrival of the front leads to a decay of the fluctuations at
all wavenumbers, whereas in the periodic case, the fluctuations keep growing and do
not show any sign of saturation.

The stratification and fluctuations in the vertical direction are illustrated in figure 3,
showing the time evolution of the concentration profile in the z-direction (where
concentration has been averaged in the horizontal plane). Initially, the transition
from the bulk concentration c = 〈c〉 to zero (clear fluid) is quite sharp. As time goes
on, the dispersion in orientation and anisotropic mobility of the particles result in
the broadening of the interface; this is demonstrated by the change in the slope
of the profile inside the front, which indicates a much smoother transition. Such
a smooth transition is not typically observed in suspensions of spherical particles
where the interface remains quite sharp throughout the sedimentation process (see
Bergougnoux et al. 2003 for instance, as well as figure 17b). Figure 3 also presents
another interesting feature, as the concentration in the suspension and in particular
near the bottom of the container is observed to exceed the mean bulk value 〈c〉. This
constitutes another proof of clustering, and also suggests an additional mechanism
for the broadening of the front, which may be due not only to the dispersion in
orientation, but also to the segregation of the clusters near the bottom of the box, as
particle aggregates have enhanced sedimentation speeds.

2.3. Pair distribution function and structure factor

The microstructural arrangement of the particles in the suspension is captured well
by the pair distribution function, which is the distribution of pairs of particles at
a given centre-of-mass to centre-of-mass distance (Ladd 1992). As observed in the
previous section, the microstructure in the suspension is highly anisotropic; to confirm
the arrangement of the spheroids into several vertical streamers in the horizontal
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Figure 4. Pair distribution function in the lateral direction at (a) t = 0 and (b) t = 100 for a
simulation of 29 952 spheroids of aspect ratio A = 15 in a box of dimensions Lx = 32, Ly = 12,
Lz = 180 (volume fraction φ = 0.1%). g(x) was calculated over the subdomain 20 <z < 30.

direction, we define a pair distribution function in the lateral direction:

g(x) =
V

N2

〈∑
i

∑
j 	=i

δ(x − xij )

〉
, (2.17)

where xij = |xi − xj | is the separation distance along the x–axis between particles i

and j , and 〈·〉 denotes the ensemble average. To avoid artefacts due to the container
sidewalls, the suspension is replicated periodically in the x-direction and the closest
separation distance is used when calculating g(x). Figure 4 shows the pair distribution
function at t = 0 and t = 100 for a typical simulation. At t = 0, g(x) is essentially
constant as the particle distribution is uniform; this is a consequence of our simulation
model in which excluded volume interactions are completely neglected. g(x) does not
remain uniform however, as shown in figure 4(b). A peak near x = 0 is observed to
form; this maximum, which had been reported in previous studies (Butler & Shaqfeh
2002; Kuusela et al. 2003), is a sign of clustering and means that there is an excess
of particles in the vicinity of any given particle. Oscillations also appear away from
x = 0, i.e. the arrangement of the particles does not remain uniform and random, but
becomes structured at long wavelengths as a result of the formation of the streamers
in the lateral direction.

The data from the pair distribution function are best analysed by taking the Fourier
transform of their fluctuating part, yielding the structure factor:

S(k) =

∫
exp(−2πikx/Lx) (g(x) − 1) dx. (2.18)

The evolution of the structure factor for the same simulation as in figure 4 is shown
in figure 5. At t = 0, no particular frequency dominates the spectrum. Progressively
a peak appears at k = 1 and k = 2 (t ≈ 40), and slowly migrates towards k = 3 while
becoming more intense. The data are very well reproducible from one simulation to
another for a given set of parameters, and this suggests that a wavenumber selection
is indeed taking place. As shown in figure 5, the wavenumber selection is associated
with the decay or breakup of the initial mode k = 1, and is linked to the presence
of container walls as it is not observed in periodic boundary conditions where the
longest mode dominates throughout the simulation.
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by taking the Fourier transform of the fluctuating part of the pair distribution g(x) shown in
figure 4 (equation (2.18)).

Box dimensions Final spacing
(Lx, Ly, Lz) between streamers

(16, 12, 180) 6.61
(32, 12, 180) 5.83
(48, 12, 180) 6.80
(64, 12, 180) 6.56
(32, 32, 180) 5.94

Table 1. Influence of the container dimensions on the wavenumber selection in suspensions
of spheroids of aspect ratio A = 15 at a volume fraction of φ = 0.1%. The spacing between
streamers is estimated using the position of the second peak that appears in the pair distribution
function g(x) (see figure 4). At given values of A and φ, the final wavelength of the fluctuations
is insensitive to the size of the container.

The dependence of the final wavelength of the fluctuations on the dimensions of
the container is investigated in table 1, where the final position of the second peak
in the pair distribution function g(x), which gives an estimate of the spacing between
streamers, is shown for various box dimensions. At given values of the volume fraction
and of the particle aspect ratio, the position of the peak is fairly insensitive to the
lateral dimensions Lx and Ly of the simulation box; at φ = 0.1% and A = 15, the data
of table 1 give a spacing of approximately 6 particle lengths in the lateral direction.
This confirms that the initial fluctuations over the width of the box give way to
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Figure 6. Velocity disturbance field at (a) t = 0 and (b) t = 60 in the midplane y = Ly/2, for a
simulation of 59 904 spheroids of aspect ratio A = 15 in a box of dimensions Lx = 32, Ly = 12,
Lz = 180 (volume fraction φ = 0.2%).

fluctuations at a wavelength that does not depend on the container dimensions, and
must therefore scale with the interparticle distance in the suspension. This transition
from box-dependent to box-independent concentration fluctuations is analogous to
what was previously reported for the velocity fluctuations in suspensions of rigid
spheres (e.g. Nicolai and Guazzelli 1995; Guazzelli 2001), suggesting that similar
mechanisms may be at play. Additional work is required to determine the precise
scaling of the final wavelength with the mean interparticle distance (or equivalently
the volume fraction) and with the aspect ratio of the spheroids.

2.4. Velocity disturbance field

The inhomogeneous microstructure described above is also visible from the velocity
disturbance field. Typical velocity fields are shown in figure 6 at the beginning of the
sedimentation and at a later time (t = 60). At t = 0, a strong flow is observed near the
centre of the box with recirculation near the walls, in agreement with the observations
made previously on the time trace of the concentration field (figure 1b). Note that
the non-zero disturbance velocity at the walls is an artefact of the slip boundary
condition used in the simulations, and would not be observed in an experiment.
However, backflow near the walls can still be expected even in no-slip boundary
conditions because of the depletion layer existing near the walls due to excluded
volume, which has a characteristic thickness of the order of half a particle length
(Mor et al. 2003). As already observed in figure 1(b), this initial flow spans most
of the box height, unlike the stacking of circular cells that has been reported for
spheres (e.g. Guazzelli 2001); this may be a consequence of the depletion layer, which
is almost inexistent in sphere suspensions at the volume fractions considered here.
Over the course of the sedimentation, smaller structures appear in the velocity field,
as shown in figure 6(b) at t = 60. The disturbance field now looks more chaotic, and
presents distinct swirls over shorter lengths scales. The vortices are slightly stretched
in the vertical direction, suggesting that the correlation is stronger in the direction of
gravity.
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Figure 7. Time evolution of the autocorrelation function of: (a) the vertical velocity
component in the lateral direction, and (b) the horizontal velocity component in the vertical
direction. The results are for a simulation of 59 904 spheroids of aspect ratio A = 15 in a box
of dimensions Lx = 32, Ly = 12, Lz = 180 (volume fraction φ = 0.2%).

These qualitative observations are confirmed in figure 7, which shows the evolution
of the autocorrelation functions of the velocity field. Figure 7(a) shows the
autocorrelation Cuzuz

(x) in the lateral direction x of the vertical velocity component uz.
At t = 0, the function decorrelates very slowly and reaches a minimum beyond x = 15
which is approximately half a box width: this very slow decay in the lateral direction
was expected as a result of the aforementioned streamer spanning the entire box
width at the beginning of sedimentation. Progressively, a clearer minimum appears
and shifts towards lower values of x. At t = 40, the minimum near x = 4 corresponds
to an anticorrelation in the vertical velocity field, i.e. to the presence of fluid streams
flowing in opposite directions. A second peak is then observed again near x = 7.
This negative correlation followed by an increase in the correlation is indicative of a
succession of similar vortex structures in the lateral direction, corresponding to the
clusters or streamers observed in the particle distribution. In particular, the position
of the peak x = 7 can be used as a rough estimate of the spacing between the clusters;
in a box of width Lx = 32 this corresponds to approximately four structures, which
is in relatively good agreement with the wavenumber obtained from the structure
factor. Note that after a while (t = 80 and beyond), the position of the minimum
in the correlation function starts increasing again as a result of the arrival of the
sedimentation front, and of the very strong damping of all the fluctuations in the
fluid.

Figure 7(b) shows the autocorrelation Cuxux
(z) in the vertical direction z of the

horizontal velocity component ux . The behaviour is somewhat similar; starting from
a very long correlation length (of the order of 15 to 20 particle lengths), the position of
the minimum shifts to a lower value z ≈ 10. This value, however, remains substantially
greater than the shortest length of 4 observed in the lateral direction. This confirms
that the structures in the velocity field and the particle distribution are stretched in
the vertical direction, typically by a factor greater than two.

The evolution of the disturbance field is reminiscent of observations made previously
on sphere suspensions (e.g. Segrè et al. 1997; Guazzelli 2001; Tee et al. 2002). In the
case of spheres, the initial disturbance field is characterized by large recirculation
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cells induced by the random Poisson statistics due to the initial mixing; these cells
are then observed to break up into smaller swirls, whose characteristic size in most
experiments is found to be of the order of 15 interparticle distances, and therefore does
not depend on the container dimensions. Several mechanisms have been proposed
for the decay of the correlation length and of the fluctuations as reviewed in § 1.
The clear analogy with the results reported here suggests that the same mechanisms
leading to the decay of velocity fluctuations in sphere suspensions may play a role
in the wavenumber selection process observed in our simulations. In particular, the
initial strong convection current may be decaying as a result of homogenization at
long wavelengths before the strongest mode (k = 1) of the instability has any time to
grow significantly. The strong stratification illustrated in figure 3 can also be expected
to play an important part (in fact much more important than for spheres because of
the dispersion in orientation which acts like a polydispersity), and may be responsible
for the continuous decay of the velocity fluctuations with no steady state as discussed
in § 2.5. Despite the qualitative similarities, the previous discussion also casts light on
several important differences. While the decay of the velocity correlation length in
sphere sedimentation is accompanied by, and possibly a result of, the homogenization
of the particle distribution in the horizontal direction (Lei et al. 2001; Nguyen & Ladd
2004, 2005), homogenization occurs only down to the wavelength of the instability
in the case of spheroids; quite strong density fluctuations persist between the core
of the streamers and the clarified fluid, as discussed in § 2.2. A detailed comparison
of the length scales of the fluctuations in both situations would be worthwhile in
order to fully appreciate the effects of the instability. As a result of the clustering, the
velocity field in the case of spheroids also maintains a much stronger correlation in
the vertical direction: long streamers of dense fluid alternate with clarified regions of
backflow, unlike the circular swirls induced by the much weaker density fluctuations
in sphere suspensions.

2.5. Velocity statistics

The effects of the instability on the sedimentation velocity are twofold. As will be
discussed in § 2.6, the strong vertical shear between the dense and clarified regions
causes the spheroids to orient vertically, resulting in an increase of their individual
sedimentation speed. Moreover, the arrangement of the particles into dense clusters
allows for the clusters to sediment faster, which can be viewed as a shielding effect.
The combination of these two effects can result in sedimentation velocities that
exceed the maximum velocity for an isolated particle, as illustrated in figure 8 where
the velocities are made dimensionless by the velocity of a single vertically oriented
spheroid. Figure 8(a) shows the evolution of the mean sedimentation velocity at
various volume fractions. Starting from an initial value close to the sedimentation
rate of 0.83 for spheroids of aspect ratio of A = 15 at infinite dilution, the mean
sedimentation velocity rapidly increases to reach a maximum value ranging from
1.5 in the more dilute case (φ = 0.1%) to approximately 1.6 at φ = 0.5%. After this
strong peak, the mean velocity decays slowly back towards smaller values, until
the arrival of the front in which the velocities are found to be much weaker. The
curves do not present any steady state, i.e. the particle velocity at a given vertical
station varies continually; the mean velocity is also observed to depend slightly on
the height at which it is measured. This differs from the experimental observations
of Herzhaft & Guazzelli (1999), who reported a mean velocity steady state; this
may be a consequence of the limited height of the box in our simulations, or of
the approximate boundary conditions on the sidewalls. Herzhaft & Guazzelli (1999)
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Figure 9. Velocity distributions obtained from: (a) simulations, and (b) the experiments of
Herzhaft & Guazzelli (1999). The simulation results are for a suspension of 41 530 spheroids
of aspect ratio A = 11 in a box of dimensions Lx = 32, Ly = 12, Lz = 180 (volume fraction
φ = 0.26%); the distribution shown was obtained shortly after the peak of the mean velocity (cf.
figure 8). The experimental distribution of Herzhaft & Guazzelli was obtained in a suspension
of cylindrical fibres of aspect ratio A = 11 ± 2, at a volume fraction of φ = 0.26 ± 0.01 %.

observed an increase of the mean sedimentation speed with concentration in the
dilute regime, in agreement with our results. The values they report for the mean
velocity are (for cylindrical fibres of aspect ratio A = 11 ± 2): 1.1 ± 0.2 at φ = 0.1%
and 0.26%, and 1.5 ± 0.3 at φ = 0.48%, which fall slightly below the peak values
shown in figure 8(a), but are of the same order as the simulated velocities after the
initial peak.

A more precise comparison to the experiments of Herzhaft & Guazzelli (1999) is
shown in figure 9, which compares the distributions of the vertical and horizontal
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velocity components from our simulations with the experimental measurements
at φ ≈ 0.26%. Because no steady state is observed as noted previously, the
velocity distribution evolves with time. The choice of a specific time to calculate
the distributions is therefore ad hoc; figure 9(a) shows the distribution measured
after the initial velocity peak, when the initial box-dependent streamer has started
to decay and when the concentration fluctuations have had time to develop. The
two distributions show very good qualitative and quantitative agreement. As already
mentioned, the mean sedimentation speed and variance are very slightly overestimated
in the simulations. However, it should be emphasized that the agreement with the
experimental results is significantly better than that previously obtained in periodic
boundary conditions (Butler & Shaqfeh 2002; Saintillan et al. 2005), where a strong
dependence on the system size and box aspect ratio was found, and where both the
mean and variance of the vertical velocity were strongly overpredicted.

Figure 8(b) shows the evolution of the velocity fluctuations in the suspension. The
fluctuations are found to be very strong shortly after the start of sedimentation
(sensibly at the same time as the velocity peak), reaching values of up to four times
the mean velocity for φ = 0.5%; very high values for the fluctuations had also been
reported by Herzhaft & Guazzelli (1999). These fluctuations are partly caused by the
strong initial flow at the centre of the box, which is accompanied by an equally strong
backflow near the walls. Shortly after reaching their maximum value, the fluctuations
are then observed to decay rapidly towards zero; again no steady state is observed.
The steady decay of the fluctuations after the initial peak is similar to what is observed
for spheres (e.g. Nicolai et al. 1995; Ladd 2002; Tee et al. 2002; Bergougnoux et al.
2003; Mucha et al. 2004). While in the case of spheres, steady velocity fluctuations
are reached in some cases, they have also been predicted to decay ad infinitum in
suspensions in which stratification is significant (Luke 2000; Mucha & Brenner 2003).
Stratification being very strong in anisotropic suspensions such as those of this study,
it most probably plays a role in the damping of the velocity variance shown in
figure 8(b).

Note that inaccuraries in the particle velocities and velocity fluctuations can
be expected given our simulation method. Most importantly, the zero tangential
stress boundary condition on the sidewalls differs significantly from the exact no-
slip boundary condition for viscous flow, with possible consequences on the rate
of decay of hydrodynamic interactions. This was pointed out by Brenner (1999),
who investigated the effects of sidewalls on fluctuations in sedimenting sphere
suspensions and showed that the no-slip boundary condition results in a screening
of interactions beyond a few wall separation distances. While enforcing the correct
boundary condition on all container walls is difficult, we also implemented the Green’s
function of Mucha et al. (2004) which satisfies no-slip on two of the sidewalls.
The results, which are described in more detail in the Appendix, indeed show that
tangential flow on the sidewalls leads to a systematic overestimation of the velocity
fluctuations (as well as the mean velocity, albeit to a lesser extent). The velocity
fluctuations in a real system are therefore likely to be weaker than those shown
in figure 8(b), which is indeed the case for the values reported by Herzhaft &
Guazzelli (1999). Yet the qualitative behaviour of the fluctuations (sharp increase
followed by a steady decrease) is likely to be captured correctly. Other sources of
inaccuracies may come from the substitution of a finite B-spline for the original
point force at the centre of the particles, which introduces an error by smoothing the
velocity disturbance field at high wavenumbers, and from the point-force model that
completely neglects higher force moments on the particles such as stresslets, which are
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Figure 10. (a) Time evolution of the mean squared orientation in the direction of gravity
〈p3p3〉, at various volume fractions. The results are for spheroids of aspect ratio A = 15 in a
box of dimensions Lx = 32, Ly = 12, Lz = 180. The results were obtained in a subsection of the
box: 67.5 <z < 90, and are averaged over ten simulations. (b) Diagram showing the mechanism
for the orientation of a prolate spheroid along the vertical axis (after Koch & Shaqfeh (1989)).

responsible for the velocity hindrance observed in suspensions of spheres (Batchelor
1972).

2.6. Orientation statistics

Figure 10(a) shows the time evolution of the mean-squared orientation 〈p3p3〉 in the
direction of gravity, which is a measure of the degree of alignment of the suspension in
the vertical direction. The initial value of 1/3 corresponds to the isotropic orientation
distribution in the initial configuration. Immediately after the start of sedimentation,
〈p3p3〉 increases sharply to reach a peak value of approximately 0.7, i.e. a very
large number of spheroids quickly orient in the direction of gravity (figure 10b). As
already mentioned earlier, this is a consequence of the strong vertical shear between
the streamer at the centre of the box and the backflow near the walls. The fastest
increase and the highest peak value are obtained in the more dense suspensions
(φ = 0.5%), as a result of the stronger velocity fluctuations (figure 8b). After the
peak is reached, 〈p3p3〉 very slowly and steadily decreases as fluctuations decay; its
value remains however above 0.6 for the remainder of the simulation, suggesting that
the alignment remains strong. After the initial peak, the value of 〈p3p3〉 is nearly
the same for all volume fractions considered, even though the velocity fluctuations
are typically stronger in more concentrated suspensions. This observation, however
unexpected, was also made previously by Herzhaft & Guazzelli (1999), who found
that the orientation distributions from their experiments were nearly identical at all
concentrations.

A typical distribution of the projected angle (i.e. the angle made by the projection
of the orientation vector p onto the (x, z)-plane with respect to the x-direction) is
shown in figure 11 and compared to the experimental distribution of Herzhaft &
Guazzelli (1999). The strong peak near 90◦ confirms the vertical alignment of many
of the particles in the suspension. While the agreement between the two distributions
is qualitatively fair, the peak is slightly underestimated in the simulations. The
experimental distribution also presents a second peak near zero (corresponding
to a horizontal alignment), whose origin is not clear and which is not captured
in the simulations. Close particle interactions, which are completely neglected in
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Figure 11. Distributions of the projected angle (angle of the projection of the orientation
vector of the particles onto a vertical plane with respect to the horizontal) obtained from:
(a) simulations, and (b) the experiments of Herzhaft & Guazzelli (1999). The simulation
results are for a suspension of 41 530 spheroids of aspect ratio A = 11 in a box of dimensions
Lx = 32, Ly = 12, Lz = 180 (volume fraction φ = 0.26%); the distribution shown was obtained
shortly after the peak of the mean squared orientation 〈p3p3〉 (cf. figure 10). The experimental
distribution of Herzhaft & Guazzelli was obtained in a suspension of cylindrical fibres of
aspect ratio A = 11 ± 2, at a volume fraction of φ = 0.26 ± 0.01%.

our simulations, may slightly influence the shape of the distribution: the strong
entanglements inside the clusters due to excluded volume may indeed have an effect
on the orientation of the particles. Yet the second minimum in the experimental
distribution must have another origin, as it was not reproduced either in the previous
simulations by Butler & Shaqfeh (2002) and Saintillan et al. (2005). These also
underpredicted the height of the main peak in most cases. The present simulations
offer the improvement that the distribution does not significantly depend on the size or
the aspect ratio of the sedimenting system. Future work will focus on including close
interactions such as excluded volume with the hope of obtaining a more quantitative
agreement for the orientation distributions.

2.7. Oblate particles

The previous discussion has focused entirely on prolate spheroids (A> 1), for which
experimental data are available. The case of oblate spheroids (A< 1), or disk-shaped
particles, has received less attention in the past in spite of its common occurrence
in environmental fluid mechanics for instance, where the sedimentation of clay is
a relevant example. To our knowledge, the concentration instability has never been
studied either experimentally or numerically for oblate particles since its theoretical
prediction by Koch & Shaqfeh (1989).

Simulations were run for oblate spheroids of aspect ratio A = 0.3 at various volume
fractions. The results were found to be qualitatively similar to those discussed above
for prolate particles, and only the main differences are summarized here. As in the
case of prolate particles, inhomogeneities are observed to develop in the suspension.
This clustering is again accompanied by an enhancement of the mean sedimentation
rate. Figure 12(a) shows the evolution of the mean velocity in the suspension at two
different volume fractions. The velocities are scaled by the sedimentation velocity of
a particle whose major axis points in the vertical direction (the slowest configuration
for an oblate spheroid), hence a lower bound of 1 for the velocity. Starting from a
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Figure 12. (a) Mean sedimentation velocity 〈uz〉, and (b) mean velocity variance in the
z-direction �uz at various volume fractions. The results are for oblate spheroids of aspect
ratio A = 0.3 in a box of dimensions Lx = 130, Ly = 40, Lz = 750. The results were obtained in
a subsection of the box: 187 < z < 281, and are averaged over ten runs.

value between 1.2 and 1.3 (compared to the expected value of 1.12 for spheroids of
aspect ratio A = 0.3 at infinite dilution), the sedimentation velocity quickly increases
and reaches a peak value around 1.5 at both φ = 0.1% and 0.2%. Figure 12(b)
shows the corresponding velocity fluctuations, which are found to be about twice
as strong as in the prolate case at the same concentrations (figure 8b). This can
be explained as follows: oblate particles have a weaker mobility (because of their
larger surface to volume ratio). At equivalent volume fraction they create the same
fluctuations as prolate particles, but sediment more slowly; when scaled by the mean
sedimentation speed, the fluctuations therefore appear much stronger. Note again that
these fluctuations are also likely to be overestimated as a result of the zero tangential
stress boundary condition at the sidewalls.

The enhancement of the velocity (figure 8a), as well as the concentration fluctuations
(not shown), are found to be somewhat weaker than in the prolate case. A possible
explanation is that the very strong velocity fluctuations observed above cause a more
rapid alignment of the particles in the disturbance flow, which then hinders their
lateral migration. Another likely reason is that the fluctuations result in more mixing,
which limits the growth of the inhomogeneities. The strong alignment of the particles
is illustrated in figure 13(a), which shows the mean-squared orientation 〈p3p3〉 in the
direction of gravity. Note that in the case of oblate particles, the alignment occurs
in such a way that the orientation vector p of the major axis points in a horizontal
direction (figure 13b). As shown in figure 13(a), the mean orientation very quickly
reaches a steady state, and remains constant until the arrival of the suspension front.

3. Deformable particles
3.1. Theoretical analysis

In this section, we develop a model for suspensions of deformable particles under
sedimentation and investigate the stability of the suspension to fluctuations in
concentration. As will become apparent, the formalism is similar to that developed by
Koch & Shaqfeh (1989) for suspensions of spheroids, although significant differences
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Figure 13. (a) Time evolution of the mean squared orientation in the direction of gravity
〈p3p3〉, at various volume fractions. The results are for oblate spheroids of aspect ratio A = 0.3
in a box of dimensions Lx = 130, Ly = 40, Lz = 750. The results were obtained in a subsection
of the box: 94 <z < 187, and are averaged over ten runs. (b) Diagram showing the mechanism
for the orientation dynamics: in the case of oblate spheroids the orientation vector p aligns in
a horizontal direction (after Koch & Shaqfeh (1989)).

exist. We first explain the micromechanical model used to describe the particle
deformations and hydrodynamic interactions in § 3.1.1, then define a convective–
diffusive equation for the concentration field in a suspension of such particles in
§ 3.1.2, and perform a linear stability analysis based on this continuum model in
§ 3.1.3.

3.1.1. Micromechanical model

The particles we consider here are isotropic in the absence of flow, and by
deformation we mean departure from isotropy. In particular, the particles need not be
technically spherical, and we will explain in § 3.2 that the arguments developed here
can apply for instance to flexible polymers with strong internal Brownian motion.
We make the fundamental assumption that particle deformations remain small, and
are entirely determined by the local rate of strain E = (∇u + (∇u)T )/2 with no regard
for the history of the flow and of particle position. This implicitly assumes that the
particle shape adjusts instantaneously on the flow time scale, or, in other words, that
the characteristic time for the shape relaxation (which is determined by properties
such as surface tension for a drop, membrane elasticity for a capsule, or internal
Brownian motion for a flexible polymer) is much less than the characteristic time
scale of the flow (which is set by the balance between the gravity force on the density
fluctuations and viscous dissipation); this condition will be justified and made more
quantitative in § 3.2. Under this assumption, the mobility M(E) of a particle can be
expanded in a Taylor series with respect to the undeformed configuration, leading to
the following approximation:

M(E) ≈ M0(I + τsE + · · ·), (3.1)

where M0I is the (isotropic) mobility of the undeformed particle, and τs is a
characteristic time defining the response of the mobility to a weak flow field and
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is a property of the particle. The condition on the flow strength can be written as:

ε = τsγ̇ � 1, (3.2)

where γ̇ is the effective characteristic shear rate of the disturbance flow imposed by
the density fluctuations.

The centre-of-mass velocity Uα of a particle α located at position xα in a suspension
is then given by the sum of the sedimentation velocity of the particle and of the
disturbance velocity in the fluid induced by the motion of the other particles:

Uα = U s + u(xα). (3.3)

The sedimentation velocity can be written as U s = M(E) · F, where M(E) is given by
equation (3.1) evaluated at position xα , and F = �ρVp g is the gravity force on the
particle. To leading order, the disturbance velocity u induced by the other particles
in the suspension satisfies the Stokes equations:

−µ∇2u + ∇p = F
∑
β 	=α

δ(xβ − x), ∇ · u = 0, (3.4)

where δ(x) is the three-dimensional Dirac delta function, and the sum is over all
particles in the suspension other than α. The only disturbance of a given particle on
the fluid is therefore taken to be a point force, which is a valid approximation if the
suspension is dilute. In a more accurate model, higher force moments (stresslets etc.)
would have to be taken into account.

3.1.2. Continuum limit

Based on the above model for particle deformations, a conservation equation
can be written for the evolution of the concentration of particles in a suspension.
Under the assumption discussed previously on the instantaneous relaxation of particle
configurations, only one particle shape can exist at a given position and at a given
time, which allows us to define the variable c(x, t) as the concentration of particles
at position x at time t . More precisely, the number of particles in an infinitesimal
volume dx surrounding the point x is given by c(x, t)dx. c(x, t) is normalized by
setting its mean value over the entire domain equal to the average number density n:

1

V

∫
V

c(x, t) dx = n. (3.5)

Using a different normalization, c(x, t) can also be interpreted as the probability
density of finding a particle at position x and time t . c(x, t) satisfies the following
conservation equation:

∂c

∂t
+ ∇ · (Uc) − ∇ · (D∇c) = 0, (3.6)

in which the rate of change of concentration at a given point is balanced by convective
and diffusive fluxes. U is the centre-of-mass velocity of a particle at position x, and is
again given by equation (3.3). The disturbance velocity u now satisfies a continuum
equivalent of equation (3.4), in which we include a body force proportional to the
local number density:

−µ∇2u + ∇p = Fc(x, t), ∇ · u = 0. (3.7)

The diffusion term in the conservation equation may have several origins. If the
particles are small enough, Brownian diffusion will arise from the thermal fluctuations
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in the solvent, leading to a diffusivity tensor given by the Stokes–Einstein relation:
D = kT M, which may be anisotropic as the particles are allowed to deform. For the
time being, we will assume that the centre-of-mass diffusion due to Brownian motion
is negligible. Even in the absence of Brownian diffusion, hydrodynamic dispersion
due to the random fluctuations in the disturbance velocity field will result in an
effective diffusivity (e.g. Ham & Homsy 1988; Koch 1994; Nicolai et al. 1995), which
is unknown a priori and is difficult to predict as it may evolve during the settling
of the suspension. The details of this process are discussed more precisely in § 3.7,
where our simulation results indeed show proof of a diffusive motion at long times.
In general, it is fair to assume that the hydrodynamic diffusivity is anisotropic and
can be written in the general form:

D = D‖ ẑ ẑ + D⊥(I − ẑ ẑ), (3.8)

where D‖ and D⊥ denote the diffusivities in the directions parallel to and perpendicular
to gravity, respectively, and ẑ is a unit vector in the vertical direction.

3.1.3. Linear stability analysis

We now have all the ingredients to perform a linear stability analysis. The base
state of the system corresponds to the absence of density fluctuations: c(x, t) = c0, in
which case the disturbance velocity is zero everywhere (u(x) = 0), the particles are all
isotropic, and a mean pressure gradient in the vertical direction balances the gravity
force on the suspension: ∇p = Fc0. Consider now a small perturbation in particle
density:

c(x, t) = c0 + c′(x, t), (3.9)

resulting in a small velocity disturbance u(x) = u′(x), and a small deformation of
the particles through the disturbance rate of strain and the linearized mobility
equation (3.1). Substituting these perturbations into the conservation equation for
the particle concentration and neglecting nonlinear products of perturbations leads
to the following linearized equation for the concentration fluctuations:

∂c′

∂t
+ M0 F · ∇c′ + c0∇ · (u′ + τsM0E

′ F) − ∇ · (D∇c′) = 0. (3.10)

Assume a normal mode perturbation of a given wavevector k:

c′(x, t) = c̃(k) exp i(k · x − ωt). (3.11)

The resulting disturbance velocity can be written: u′(x, t) = ũ(k) exp i(k · x −ωt) where
the Fourier coefficient ũ(k) was calculated analytically by Hasimoto (1959):

ũ(k) =
1

µk2

(
I − kk

k2

)
· Fc̃(k). (3.12)

Noting that Ẽ
′
(k) = i(ũ′k + kũ′)/2, and that k · ũ′ = 0 from continuity, equation (3.10)

simplifies to:

−iωc̃ + iM0 F · kc̃ − τsc0M0

2µ
F ·

(
I − kk

k2

)
· Fc̃ + k · (Dk)c̃ = 0. (3.13)

Denote by θ the angle between the wavevector k and the direction of gravity:
k · ẑ = k cos θ , and let F = F ẑ. After manipulation, we can solve for the wave frequency
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Figure 14. Growth rate as a function of the magnitude of the wavenumber: in dimensionless
variables, ω∗

I = sin2 θ − ξ (k∗)2(D‖/D⊥ cos2 θ + sin2 θ ), where ξ is a dimensionless diffusion
constant (equation (3.17)). For both plots the ratio D‖/D⊥ of the diffusivities was chosen
equal to 2. (a) shows the influence of the orientation angle θ of the wavevector with respect
to the direction of gravity, at ξ = 1. (b) shows the influence of the diffusion coefficient ξ for a
horizontal wave (θ = π/2).

ω as a function of the magnitude k and orientation θ of the wavevector:

ω = M0Fk cos θ + i

[
τsc0M0F

2

2µ
sin2 θ − k2(D‖ cos2 θ + D⊥ sin2 θ)

]
. (3.14)

The frequency ω has a real part ωR = M0Fk cos θ = U0k cos θ , which is non-zero
for wavevectors with a vertical component, i.e. for density fluctuations in the vertical
direction, and corresponds to travelling waves with a wave speed equal to the
sedimentation velocity; such waves do not either grow or decay. The imaginary part
of the frequency

ωI =
τsc0M0F

2

2µ
sin2 θ − k2(D‖ cos2 θ + D⊥ sin2 θ) (3.15)

is non-zero and positive at low wavenumbers for wavevectors with a horizontal
component, provided that the constant τs is positive (which, as we argue in the
following section, is the case in many situations). Low-wavenumber fluctuations in
the horizontal direction will therefore amplify, and the growth rate is plotted vs. k

for different values of the wave orientation θ and of the diffusivities D⊥ and D‖ in
figure 14, in which the following dimensionless variables are used:

ω∗
I = ωI ×

[
τsc0M0F

2

2µ

]−1

, k∗ = k × c
−1/3
0 , (3.16)

and where we introduce a dimensionless diffusion coefficient

ξ =
2µD⊥

τsc
1/3
0 M0F 2

, (3.17)

comparing the effects of diffusion and of the lateral convection due to deformations.
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In the absence of hydrodynamic dispersion, equation (3.15) and figure 14(b) show
that the growth rate is independent of the wavenumber, i.e. in the linear regime, all
fluctuations grow at the same pace. This peculiar behaviour is a consequence of the
linear dependence of the mobility correction on the disturbance rate of strain and of
the slow decay of the disturbance velocity in sedimenting suspensions, both of which
result in a migration flux scaling as 1/k, and in a growth rate independent of k. The
damping of the fluctuations shown in figure 14 is therefore purely a consequence
of hydrodynamic dispersion: at a value of ξ = 1, diffusion dominates deformation-
induced lateral migration over length scales of the order of the mean interparticle
distance, hence the negative growth rates observed beyond k∗ = 1. This mechanism is
to be contrasted with the damping observed by Koch & Shaqfeh (1989) in the case
of spheroids, where diffusion had been neglected. For spheroids, the decay at high
wavenumbers is a consequence of the non-instantaneous relaxation of the particle
orientation, whose characteristic time can be of the same order as the time for the
spheroid to migrate over one wavelength at high enough wavenumbers. An equivalent
way of looking at it is to recognize that the dispersion in orientation due to the initial
random configuration leads to an effective dispersion of the centre-of-mass motion,
qualitatively similar to the Taylor dispersion for Brownian systems (Brenner 1979).
Introducing shape history effects (i.e. non-instantaneous shape relaxation) into our
model would provide an additional mechanism for damping similar to the dispersion
in orientation for rigid spheroids; however, as we will observe for droplets in § 3.2.1,
including shape history would typically lead to O(ε2) corrections in weak flows. It
should also be noted that the continuum model developed here is not valid for
fluctuations over length scales that are shorter than the interparticle distance, and the
results described above are expected to break down at sufficiently high wavenumbers.

3.2. Examples of deformable particles

The previous model, for all its simplicity, is based on two strong assumptions whose
applicability may not seem obvious: (i) that the particle shape relaxes instantaneously
on the flow time scale; and (ii) that in weak flows the mobility of a slightly deformed
particle can be written as a linear function of the local rate of strain with a positive
constant of proportionality. In this section, we discuss in turn the small deformation
of viscous drops, elastic microcapsules and flexible polymers, and show that all three
of these satisfy both assumptions in the limit of weak flows.

3.2.1. Viscous drops

The small deformation of a viscous drop in a linear flow field was first studied
by Taylor (1932, 1934) and later generalized by Cox (1969) and Frankel & Acrivos
(1970). At zero Reynolds number, the deformation is a function of two dimensionless
groups, namely the viscosity ratio λ= µ/µ0 and the capillary number Ca = µγ̇ a/σ ,
where γ̇ is the characteristic shear rate of the imposed flow field, a is the radius of
the undeformed drop and σ is the surface tension. The capillary number compares
the effect of the flow, which tends to stretch the drop along its extensional axis, to the
restoring effect of surface tension, which tries to miminize the interfacial energy by
maintaining a spherical shape. In the limit of weak flows (Ca � 1), the drop is found
to deform into an ellipsoid whose surface is defined by:

r = a(1 + 3 Ca n · A · n) + O(Ca2), (3.18)
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where n is a unit radial vector and A is a symmetric and traceless second-order tensor
satisfying the following evolution equation:

Ca

(
∂A

∂t
− Ω · A + A · Ω

)
= a0E + a1A + O(Ca), (3.19)

with a0 = 5/(6λ+9) and a1 = −40(λ+1)/ [(2λ + 3)(19λ + 16)]. Ω and E are, respectively,
the rate of rotation and rate of strain of the imposed flow; in equation (3.19), lengths
have been non-dimensionalized by the drop radius a, and time by the inverse of
the effective characteristic shear rate γ̇ −1. At zeroth order in the capillary number,
equation (3.19) leads to:

A = −a0

a1

E =
8(19λ + 16)

3(λ + 1)
E + O(Ca), (3.20)

showing that the drop shape is only dependent upon the local rate of strain and not
on the shape history (i.e. it relaxes instantaneously). Equation (3.18) then becomes:

r = a

(
1 +

8(19λ + 16)

λ + 1
Ca n · E · n

)
+ O(Ca2). (3.21)

The drop shape is therefore ellipsoidal, its principal axes are aligned with the principal
axes of the local rate of strain, and it is stretched in the direction of flow extension.
The sedimentation velocity of such a deformed drop placed in a gravity field was
calculated by Haber & Hetsroni (1971) using expansions in spherical harmonics, and
by Manga & Stone (1993) by application of the reciprocal theorem for Stokes flow.
Both indeed find a correction to the sedimentation velocity which is linear in the rate
of strain E for small deformations. The result from Haber & Hetsroni (1971) can be
written as:

M(E) = M0

(
I +

(19λ + 16)(3λ2 + 3λ + 4)

40(2 + 3λ)(1 + λ)2
Ca E + O(Ca2)

)
, (3.22)

where M0 = (1 + λ)/2(2 + 3λ)πµa is the mobility of a spherical drop. Equation (3.22)
is indeed similar to equation (3.1) with a positive constant τs .

3.2.2. Elastic microcapsules

Barthès-Biesel (1980) and Barthès-Biesel & Rallison (1981) developed a similar
small-deformation theory for elastic microcapsules, which are particles consisting
of an elastic membrane enclosing a drop of fluid. In this case, the dimensionless
parameters are the viscosity ratio λ, and the ratio ε = µγ̇ a/Eh of the viscous stresses
in the fluid and elastic tensions in the membrane, where E denotes the elastic modulus
of the membrane material and h its thickness. In weak flows (ε � 1), the shape is
again found to be ellipsoidal, and to leading order in ε, the equation of the surface is
obtained to be (Barthès-Biesel & Rallison 1981):

r = a (1 + f εn · E · n) + O(ε2), (3.23)

where f is a function of the material properties of the membrane; for an
incompressible isotropic material in the small deformation regime: f = 25/2.

The mobility of an ellipsoidal capsule is simply the mobility of a solid ellipsoid,
which is known exactly (for instance, Happel & Brenner 1965). In the case of small
deformations, the mobility can be expanded in a Taylor series with respect to the
spherical shape, and is found to be:

M(E) = M0

(
I + 1

5
f εE + O(ε2)

)
, (3.24)

where M0 = 1/6πµa is the mobility of a solid sphere.



Sedimentation of orientable and deformable particles 375

3.2.3. Flexible polymers

The applicability of the model to flexible polymers is less evident. In the absence
of flow, a polymer molecule relaxes to a statistically isotropic coiled state as a
result of internal Brownian motion. The application of a weak flow will lead to a
small departure from this isotropic state, provided that the molecule can sample its
configuration space sufficiently fast on the flow time scale, i.e. that its relaxation time is
much faster than the inverse of the effective flow shear rate γ̇ −1. The configuration of
the molecule is then represented well by the average second moment of its end-to-end
vector: Q = 〈RR〉, and its mobility can be written in the general form:

M = mI + m′Q. (3.25)

In the simplest case of a linear spring law, the configuration tensor Q satisfies the
following evolution equation (Bird et al. 1987):

Wi

(
d

dt
Q − ∇u · Q − Q · ∇uT

)
+ Q − kT

H
I = 0. (3.26)

Wi is the effective Weissenberg number defined as the ratio of the relaxation time
of the molecule to the characteric flow time scale γ̇ −1, kT is the thermal energy of
the solvent, and H is the spring constant. For weak flows (Wi � 1), the configuration
tensor can be solved for as a perturbation expansion in powers of the Weissenberg
number: Q = Q(0) + WiQ(1) + O(Wi2), yielding:

Q =
kT

H

(
I + Wi

(
∇u + ∇uT

))
+ O(Wi2). (3.27)

The mobility of the molecule equation (3.25) then becomes:

M(E) =

(
m + m′ kT

H

)
I + 2m′ kT

H
WiE + O(Wi2) (3.28)

and is again in the form of equation (3.1).

3.3. Simulation method for deformable particles

The simulation method described in § 2.1 for spheroids is easily adapted to the case
of deformable particles, using the model of § 3.1.1. The motion of a particle α is
described by the following dynamic equation:

ẋα = M(xα) · F + u(xα), (3.29)

in which the linearized mobility of equation (3.1) is used:

M(xα) = M0 (I + τsE(xα)) . (3.30)

Hydrodynamic interactions are again captured through the disturbance velocity field
u which is obtained as a solution of the Stokes equations (2.5) with the same body
force field equation (2.8) as in the case of spheroids. The velocity u is used to infer
the disturbance rate of strain E at the particle positions, which appears in the particle
mobility equation (3.30). The Stokes equations are again solved spectrally on a grid,
as explained in § 2.1.3. The particle positions are advanced using a fourth-order
Runge-Kutta time-marching scheme. Unless noted otherwise, the results shown are
for non-periodic systems with slip boundary conditions.

In the following discussion, the results are made dimensionless using the
characteristic radius a of an undeformed particle, the sedimentation velocity U0 = M0F
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Figure 15. Time evolution of the Fourier coefficients of the concentration for a simulation
of 158 239 deformable particles in a box of dimensions Lx = 390, Ly = 390 and Lz = 2200
(volume fraction φ = 0.2%), in both (a) non-periodic and (b) periodic boundary conditions.
The results shown are for ε = 0.5 and r = 15. The spectra were calculated over a subsection
of the container: 250 <z < 650, and were averaged over four runs. The lower plots show the
evolution of the mean volume fraction in the section in which the spectra were obtained.

of an isolated particle, and the characteristic time a/U0 for an isolated particle to
sediment over its radius. A precise non-dimensionalization of the equations yields two
dimensionless groups (in addition to the volume fraction φ): a deformation parameter
ε = τsU0/a, which characterizes the effect of the flow on the shape deformation (in the
case of droplets ε is essentially the Bond number or capillary number based on the
shear rate induced by the sedimentation of a drop, modified to include the function
of the viscosity ratio in equation (3.22)), and a resistance parameter r = �ρVpg/µU0a,
which takes on the value of 6π for a solid particle and of 2π(2 + 3λ)/(1 + λ) for a
viscous droplet. Most of the results presented below are for a deformation parameter
of ε = 0.5 (which as we verify in § 3.5 does indeed lead to small deformations at
the volume fractions considered in this work), and a resistance parameter of r = 15,
corresponding approximately to a drop with a viscosity ratio of 1. For the sake of
comparison, a few results are also shown for spherical particles, obtained by setting
the deformation parameter ε to zero.

3.4. Concentration fluctuations and microstructure

The same type of analysis as in the case of spheroids can be carried out for
deformable particles. Figure 15 shows the evolution of a few Fourier coefficients
of the concentration field in non-periodic and periodic systems. Initially, all Fourier
modes are equally important. In the periodic case (figure 15b), no significant growth
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is observed up to 1000 time units, after which all four modes start growing. As in the
case of spheroids and as predicted by the linear stability analysis (equation (3.15) and
figure 14), the longest mode k = (1, 0, 0), set by the width of the box, dominates; the
growth is exponential and does not seem to saturate. As expected, the non-periodic
case is quite different. The fluctuations are typically much weaker and the longest
mode is not the strongest. Figure 15(a) shows that all modes initially grow at the same
pace. The longest modes k = (1, 0, 0) and k = (2, 0, 0), however, stop growing, giving
way progressively to the growth of the shorter modes k = (3, 0, 0) and k = (4, 0, 0)
which dominate up to the arrival of the suspension front (lower plot) and the decay
of the fluctuations.

As in the case of spheroids, figure 15 suggests that the presence of walls and the
possibility of stratification provide a mechanism for the breakup of the longest modes
into fluctuations at shorter wavelengths, which are then observed to dominate the
spectrum. In spite of the strong similarity between the sedimentation of orientable
and deformable particles, the two situations also present some differences. In the case
of deformable particles, the growth is much more progressive and slow: the peak of
the fluctuations occurs quite late during the sedimentation process. For spheroids,
however, the growth of the fluctuations was rapid initially, after which it was found to
saturate in non-periodic systems and to slow down in periodic systems (figure 2). This
qualitative difference can be explained in the following way. In the case of spheroids,
we saw in figure 10 that the fluctuations in the fluid result in a very quick alignment
of the particles in the direction of gravity. Once most particles are aligned, migration
becomes rather difficult, as the lateral velocity of an almost vertical spheroid is weak:
further clustering is therefore limited. In the case of deformable particles, however,
the stretching of the particles occurs along the axis of flow extension which is at 45◦

in shear flow, and migration is therefore quite easy, even though the deformations
may be small. Moreover, as we will show in § 3.5, deformations become larger with
time, allowing for a steady increase of the concentration fluctuations, whereas for
spheroids the orientation distribution quickly reaches a steady state. This explains
why the instability takes a longer time to develop, and similar observations will be
made on the mean velocity and velocity fluctuations in § 3.6.

Figure 16 shows the pair distribution function and the structure factor in the lateral
direction at t = 0 and t = 1200, for both deformable particles (ε = 0.5) and isotropic
particles such as rigid spheres (ε = 0). At t = 0, the pair distribution is uniform in both
cases, and no clear peak is present in the structure factor. In the case of deformable
particles, g(x) progressively develops oscillations and a peak near x = 0; while these
are not as pronounced as in figure 4 for spheroids, the data of figure 16 are less noisy
and the oscillations clearer. These oscillations result in a sharp peak in the structure
factor at t = 1200, which is located near k = 3. A similar structure to that for spheroids
is therefore present in the suspension, with denser regions or clusters alternating in the
lateral direction with clear fluid. The evolution of the structure factor with time (not
shown), also suggests that the formation of this structure is the consequence of the
breakup of long-wavelength fluctuations. In the case of undeformed isotropic particles
(ε = 0), no clear evolution of the pair distribution function or structure factor can be
seen, and the fluctuations at t = 1200 remain negligible. This confirms the central role
of shape anisotropy in the concentration instability observed in suspensions of either
spheroids or deformable particles.

Results on the stratification are also shown in figure 17 for both deformable and
isotropic particles. The deformable case (figure 17a) is qualitatively similar to the case
of spheroids shown in figure 3. In particular, a broad suspension front is observed to



378 D. Saintillan, E. S. G. Shaqfeh and E. Darve

1.06

(a) (b)

0.5

0.4

0.3

0.2

0.1

0

0.5

0.4

0.3

0.2

0.1

t = 0 ε = 0.5

0

t = 0

t = 1200 t = 1200

g(x)

g(x)

S(k)

S(k)

x

1.04

1.02

1.00

0.98

0.96

0.94

1.06

1.04

1.02

1.00

0.98

0.96

0.94

0 0 5 10
kLx

15 2020 40 60 80 120 140 160 180 200

Figure 16. (a) Pair distribution function and (b) structure factor at t = 0 and t = 1200 for
a simulation of 148 349 particles in a box of dimensions Lx = 390, Ly = 145 and Lz = 2200
(volume fraction φ = 0.5%). The plots show results for both deformable particles (ε = 0.5) and
isotropic particles such as rigid spheres (ε = 0), at the same resistance parameter of r = 15.

form between the bulk of the suspension and the clear fluid at the top; concentrations
exceeding the bulk average are also observed near the bottom of the box as a result
of clustering. As in the case of spheroids, this strong stratification is a consequence of
the anisotropic mobility of the particles, which acts like a polydispersity, and of the
segregation of the clusters near the bottom of the container. Note that neither of these
effects is present in the case of isotropic particles (figure 17b), where the interface
between the suspension and the clear fluid is sharp and does not show any significant
broadening, and where the concentration in the suspension remains uniform in the
vertical direction and equal to the mean bulk value.

3.5. Particle deformation

It is important to verify a posteriori that the deformation of the particles in the
simulations remains small. As the particle shape or configuration is not explicitly
calculated in the simulation method, but only its mobility, we define an effective
aspect ratio A as the ratio of the largest to the smallest of the eigenvalues of the
mobility tensor. This ratio, which is 1 for a spherical particle, but would approach 2
for a very slender particle, is indeed a measure of the anisotropy. Figure 18(a) shows
the evolution of A at various volume fractions, for a deformation parameter ε of 0.5.
All three curves present an initial increase of the effective aspect ratio as a result of the
instability, followed by a decrease as the front approaches and as the fluctuations decay
in the suspension. At low volume fractions (φ = 0.1%), the particles remain very close
to isotropic, with a mean aspect ratio of less than 1.01. Deformations become more
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Figure 17. Cross-section averaged concentration profile in the vertical direction at various
times during the sedimentation of suspensions of (a) deformable particles (ε = 0.5), and (b)
isotropic particles (ε = 0). The results are for a resistance parameter of r = 15 and were
obtained in suspensions of 148 349 particles in a box of dimensions Lx = 390, Ly = 145,
Lz = 2200 (volume fraction φ = 0.5%). The concentration profile is normalized by its average
value 〈c〉.
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Figure 18. (a) Time evolution of the mean effective aspect ratio A at different volume
fractions, and (b) distribution of the effective aspect ratio at a volume fraction of φ = 0.2%.
The simulations are for ε = 0.5 and r = 15 and were performed in a box of dimensions Lx = 390,
Ly = 145, Lz = 2200. The results were obtained in a subsection of the box: 550 < z < 850, and
are averaged over ten runs.

significant at higher concentrations as a result of the stronger velocity fluctuations;
nevertheless, the mean aspect ratio does not exceed 1.06 even at the highest volume
fraction of 0.5%, therefore validating our small-deformation assumption. A typical
distribution for the aspect ratio is shown in figure 18(b) at φ = 0.2%: while the mean
value falls slightly below 1.02, aspect ratios in the suspension range from 1 up to
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Figure 19. Mean sedimentation velocity 〈uz〉 in suspensions of (a) deformable particles
(ε = 0.5), and (b) isotropic particles (ε = 0) for a resistance parameter of r = 15 and at various
volume fractions. The simulations were performed in a box of dimensions Lx = 390, Ly = 145,
Lz = 2200. The results were obtained in a subsection of the box: 550 <z < 850, and are averaged
over ten runs.

nearly 1.05. This shape polydispersity is a natural consequence of the inhomogeneous
flow field: the particles located in regions of strong shear typically undergo stronger
deformations than those located near the local extrema of the disturbance velocity.

Note that larger deformations may have been expected given the value chosen
for the deformation parameter (ε = 0.5). This is a consequence of the length scale
used in the definition of ε (the particle radius a), which can differ significantly from
the characteristic length scale lc over which the velocity fluctuations occur in the
suspension. Typically, the disturbance velocity varies over distances that are much
larger than a (up to the width L of the container during the initial instants), leading
to velocity gradients scaling with U0/lc. A more appropriate deformation parameter
would be ε = τsU0/lc; however, the fact that lc is unknown a priori and evolves during
the sedimentation process makes this definition awkward.

3.6. Velocity statistics

As in the case of spheroids, the particle deformations and the clustering have a strong
impact on the sedimentation rate and the velocity fluctuations. This is illustrated in
figures 19 and 20, where results for deformable (ε = 0.5) and isotropic (ε = 0) particles
are compared at various volume fractions. The mean sedimentation speed in both
cases is shown in figure 19. In the case of deformable particles, figure 19(a) shows a
slow and steady increase of the mean sedimentation speed beyond the velocity of 1 of
an isolated isotropic particle; this enhancement of the velocity is to be contrasted with
the results of figure 19(b) in the absence of deformations, where the mean velocity
is approximately constant and equal to 1 at all three volume fractions. Note that, in
reality, a dependence on volume fraction will be observed in suspensions of spherical
particles, as fluid backflow results in velocity hindrance (e.g. Batchelor 1972); this
effect, however, cannot be captured at the point-force level used in our simulations.
While the velocity increase in figure 19(a) is quite weak at low volume fractions
(owing to the small deformations resulting in a weak instability), it becomes quite
significant at φ = 0.5% where the mean velocity reaches a peak value beyond 1.9.
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Figure 20. Velocity variance in the z-direction �uz in suspensions of (a) deformable particles
(ε = 0.5), and (b) isotropic particles (ε = 0) for a resistance parameter of r = 15 and at various
volume fractions. The simulations were performed in a box of dimensions Lx = 390, Ly = 145,
Lz = 2200. The results were obtained in a subsection of the box: 550 <z < 850, and are averaged
over ten runs.

This very drastic increase is mainly a consequence of the clustering, as the particle
mobility at φ = 0.5% was shown in figure 18 to differ by less than 10% from isotropy.
Again the velocities are observed to decay as the front becomes nearer and as the
concentration fluctuations become weaker.

The very high value for the sedimentation speed at φ = 0.5% may seem surprising
when compared to the case of prolate spheroids where the peak velocity was also
slightly slightly less than 2 at the same volume fraction (figure 8). This can be
understood in the light of the comments made in § 3.4; in the case of spheroids, the
strong and rapid alignment in the vertical direction somewhat hinders the lateral
migration of the particles after a short initial time. For deformable particles, however,
the steady increase in the effective aspect ratio and the orientation of the particles
along the direction of flow extension result in a prolonged clustering and in the steady
increase of the mean velocity.

The velocity fluctuations in the vertical direction are shown in figure 20. While
figure 20(b) shows a decay of the fluctuations in the case of isotropic particles,
confirming observations made in previous studies (e.g. Bergougnoux et al. 2003;
Mucha et al. 2004), the instability in the deformable case causes an initial increase in
the fluctuations, followed by a steady decrease towards zero; no steady state is reached.
The initial increase, which is a result of the deformations and of the clustering, leads to
very strong fluctuations at the highest volume fraction of φ = 0.5%, where they reach
up to 4 times the sedimentation speed of an isotropic particle. The subsequent decay
of the fluctuations also appears to be somewhat faster with deformable particles, a
possible consequence of the strong stratification that is observed to develop in the
suspension (Luke 2000).

3.7. Hydrodynamic dispersion

The decay of high-wavenumber fluctuations in the stability analysis of § 3.1.3
was attributed to hydrodynamic dispersion. As we previously mentioned, it is an
established result that particles in sedimenting suspensions undergo a diffusive
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Figure 21. Mean squared displacement (a) in the z-direction and (b) in the x-direction at
various volume fractions. The simulations are for ε = 0.5 and r = 15 and were performed in a
box of dimensions Lx = 390, Ly = 145, Lz = 2200; the results are averaged over three runs. For
(a) the displacements were measured with respect to the mean motion of the entire suspension.

motion at long times relative to the mean settling motion and as a result of
random fluctuations in the velocity field. In an attempt to understand the qualitative
influence of the concentration fluctuations on hydrodynamic dispersion, mean-squared
displacement curves were calculated and are shown in figure 21. All curves have a
zero derivative at t = 0 and show a convective behaviour at short times: (�x)2 ∼ t2,
(�z)2 ∼ t2. The slopes progressively stop increasing and a transition to a different
regime occurs. The motion in the vertical direction becomes clearly diffusive, as
suggested by the nearly constant slope in figure 21(a): (�z)2 ∼ D‖t . While confirming
the diffusive nature of the particle motions, figure 21(a) should not be expected to
produce quantitative results for the diffusivity, since close particle interactions and
short-scale variations of the velocity field, both of which play an important part in
the diffusion process, have been completely neglected in the simulations.

Diffusion is much less clear in the lateral direction (figure 21b), in which the mean-
squared displacement slowly saturates to a constant value. This saturation could have
several origins: in particular, lateral displacements are limited owing to the finite
extent of the simulation box. It is also possible that the arrangement of the particles
into dense clusters confines the lateral diffusion to the extent of one streamer; this
seems to be supported by the steady-state value of �x � 100 in figure 21(b), which is
of the order of a quarter of a box width. A more precise investigation is required to
confirm this hypothesis.

4. Conclusions
We used a combination of large-scale numerical simulations and theory to study

the sedimentation of orientable particles such as spheroids, and deformable particles
such as viscous droplets. Our analysis focused on the concentration fluctuations and
the microstructure in very dilute suspensions of realistic sizes. The concentration
instability in suspensions of spheroids was captured in our simulations, and we
observed that the no-flux boundary condition imposed at the bottom of the container
has a strong impact on the structure of the suspension and can lead to a wavenumber
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selection for the concentration fluctuations. This result differs qualitatively from
previous computational studies of periodic systems, in which the longest wavelength
set by the width of the container always dominates. Our simulations suggest that
horizontal container boundaries provide a mechanism for the decay or breakup of
these long-wavelength fluctuations, down to the selected wavelength of the instability.
Although the precise mechanism for this breakup is not entirely clear, it appears
to be qualitatively analogous to the suppression of low-wavenumber horizontal
density fluctuations in suspensions of rigid spheres (Lei et al. 2001; Nguyen &
Ladd 2004, 2005), which may be a consequence of homogenization by recirculation
currents (Hinch 1987). Results for the velocity and orientation statistics showed good
agreement with previous published experiments; in particular, these statistics were
found not to depend upon the size and aspect ratio of the sedimenting system, unlike
in previous simulations with periodic boundary conditions.

A simple model was developed for sedimenting suspensions of deformable particles,
which is equally applicable to viscous droplets, elastic microcapsules or flexible
polymers. Under the assumptions that the flow-induced deformations are small and
that the relaxation of the particle shape or configuration occurs instantaneously
on the flow time scale, we were able to perform a linear stability analysis and
to prove that such suspensions are unconditionally unstable to horizontal density
fluctuations. The analysis, based on a dilute assumption in an unbounded domain,
shows that in the absence of centre-of-mass dispersion, all wavenumbers are
equally unstable. Hydrodynamic dispersion is predicted to damp high-wavenumber
fluctuations, resulting in a maximum growth rate at zero wavenumber.

Point-particle simulations were also performed for deformable particles, confirming
the mechanism for the instability. Density fluctuations in the particle distribution
are observed to grow in time as a result of the deformation of the particles, which
leads to a lateral migration; the growth of the fluctuations is typically slower, but
more steady than in suspensions of spheroids. The simulation results manifest a
qualitatively similar mechanism for the wavenumber selection: while the longest
wavelength grows unbounded in periodic systems, this mode is observed to break up
in non-periodic geometries, resulting in the formation of distinct clusters separated
by clarified regions in the lateral direction. The instability for deformable particles
also causes an increase in the mean sedimentation velocity, and our simulations
suggest that quite small departures from isotropy can have very strong effects. To our
knowledge, no experimental data are available for comparison, but we hope that the
present observations will spur additional interest in this problem.

Several effects were neglected in our simulation method, which is based on a
dilute assumption and does not account for close particle interactions. In suspensions
of spheroids, lubrication forces and excluded volume can lead to entanglements
whose effects are not described by far-field hydrodynamics. These interactions, which
may play a role inside the dense clusters and certainly become important in more
concentrated suspensions, may affect the typical size of the clusters, as well as
statistical properties such as the orientation distributions and the mean velocity.
In particular, experiments on fibre suspensions suggest that in the semi-dilute and
concentrated regimes entanglements lead to the formation of large networks of
fibres and to velocity hindrance (Turney et al. 1995; Herzhaft & Guazzelli 1999);
additional work is required to model these regimes. In the case of deformable particles,
the effects of short-range interactions will depend on the precise nature of the
particles. Zinchenko & Davis (2000, 2003) addressed the case of very concentrated
emulsions (φ ∼ 0.5); the non-local nature of the flow and the lubrication interactions
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between neighbouring drops result in complex drop deformations that cannot be
adequately captured by the small-deformation model used in our work. In emulsions,
the concentration instability may also enhance drop coalescence and therefore increase
polydispersity; coalescence during sedimentation, which was previously studied using
population dynamics (e.g. Manga & Stone 1995; Wang & Davis 1995), could be
incorporated into our simulations using similar phenomenological collision models.
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Appendix. Numerical accuracy of the Stokes flow solution
The solution of the Stokes equations described in § 2.1.3 is based on a few

approximations, the effects of which are investigated in this Appendix. First, we
study the effects of the tangential flow boundary condition at the container walls in
§ A.1, where we provide a comparison to a more accurate solution satisfying the no-
slip boundary condition on two of the vertical walls. The effects of the grid resolution
(number of Fourier modes) are then discussed in § A.2.

A.1. Effect of the tangential flow boundary condition

Our simulations have shown the importance of the no-flux boundary condition
for the fluid at the bottom of the container, which is responsible for large-scale
recirculation and appears to play a central role in the wavenumber selection of the
concentration instability. While the no-flux condition is crucial at the bottom wall,
previous investigations have suggested that the no-slip boundary condition on the
container sidewalls may play a part in the damping of the velocity fluctuations (e.g.
Brenner 1999; Mucha et al. 2004). The Green’s function for Stokes flow is indeed
strongly affected in confined geometries, where hydrodynamic interactions decay
faster and are effectively screened over distances of the order of the shortest wall
separation.

While the Green’s function for Stokes flow between two parallel walls is known
(Liron & Mochon 1976; Bhattacharya & B�lawzdziewicz 2002; Staben, Zinchenko &
Davis 2003; Jones 2004), no analytical form exists in the case of finite containers
such as those considered in this work. For the purpose of comparison with the slip
solution used in our work, we implemented the Green’s function proposed by Mucha
et al. (2004), which satisfies the no-slip boundary condition on two of the sidewalls
(typically the two closest ones) and a tangential flow boundary condition on the
remaining walls. This Green’s function uses expansions in Fourier series in the two
directions parallel to the no-slip walls, which are typically truncated at a finite number
of modes; yet the absence of periodicity in the third direction precludes the use of
fast Fourier transforms as for the slip solution, resulting in a higher computational
cost for the evaluation of hydrodynamic interactions. See the Appendix of Mucha
et al. (2004) for a detailed discussion of the no-slip solution.

Results of the comparison are summarized in table 2, where we show the effects
of the boundary condition on the mean velocity and velocity fluctuations. These
two quantities were calculated with either of the two Green’s functions for a series
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Slip No-slip

Time Window 〈uz〉 �uz 〈uz〉 �uz

t = 0
0 < z < 180 0.79 1.20 0.78 0.59

45 < z < 67.5 0.83 1.17 0.79 0.61

t = 20
0 < z < 180 1.38 2.43 1.18 1.12

45 < z < 67.5 1.52 3.09 1.21 1.19

t = 40
0 < z < 180 1.18 1.35 1.03 0.87

45 < z < 67.5 1.21 1.60 1.11 0.98

t = 60
0 < z < 180 1.15 1.20 1.05 0.89

45 < z < 67.5 1.13 1.47 1.05 0.85

t = 80
0 < z < 180 1.06 0.85 1.06 0.80

45 < z < 67.5 1.10 0.91 1.07 0.80

Table 2. Influence of the flow boundary condition on the container sidewalls. Average
sedimentation velocities 〈uz〉 and velocity fluctuations in the vertical direction �uz were
evaluated for a set of particle configurations corresponding to various stages during
sedimentation (t = 0 to 80), using the tangential flow boundary condition described in § 2.1.3
(‘slip’), and the Green’s function of Mucha et al. (2004), which satisfies the no-slip boundary
condition on two of the sidewalls (‘no-slip’). The particle configurations used were obtained
from a full simulation using the tangential flow boundary condition, in a suspension of 29 702
spheroids of aspect ratio A = 15 in a box of dimensions Lx = 32, Ly = 12, Lz = 180 (volume
fraction φ = 0.1%). The statistics were calculated in two different windows: 0 < z < 180 (entire
container), and 45 < z < 67.5 (same window as in figure 8).

Number of Fourier modes

16 × 16 × 64 32 × 16 × 128 64 × 32 × 256

Time Window 〈uz〉 �uz 〈uz〉 �uz 〈uz〉 �uz

t = 0
0 < z < 180 0.81 1.82 .79 1.20 0.77 0.99

45 < z < 67.5 0.84 1.85 .83 1.17 0.81 0.92

t = 20
0 < z < 180 1.36 2.98 .38 2.43 1.38 2.22

45 < z < 67.5 1.54 3.75 .52 3.09 1.52 2.89

t = 40
0 < z < 180 1.09 1.93 .18 1.35 1.21 1.19

45 < z < 67.5 1.17 2.31 .21 1.60 1.31 1.51

t = 60
0 < z < 180 1.06 1.60 1.15 1.20 1.22 1.32

45 < z < 67.5 1.16 1.83 1.13 1.47 1.18 1.45

t = 80
0 < z < 180 0.96 1.13 1.06 0.85 1.18 0.98

45 < z < 67.5 1.03 1.21 1.10 0.91 1.20 1.03

Table 3. Influence of the grid resolution on the accuracy of the Stokes flow solution.
Average sedimentation velocities 〈uz〉 and velocity fluctuations in the vertical direction �uz

were evaluated for a set of particle configurations corresponding to various stages during
sedimentation (t = 0 to 80), for various grid resolutions (i.e. numbers of Fourier modes). The
same particle configurations were used as in table 2, and the statistics were calculated in
two different windows: 0 < z < 180 (entire container), and 45 < z < 67.5 (same window as in
figure 8).

of particle configurations corresponding to various stages of the sedimentation in a
suspension of spheroids. While the mean velocities are quite similar in both cases
(albeit somewhat higher with slip boundaries), table 2 shows that velocity fluctuations
are systematically overestimated when slip is allowed, by up to a factor of 2 at the
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peak of the fluctuations. This result, which supports the previous conclusions of
Brenner (1999) and Mucha et al. (2004), also explains some of the differences noted
in § 2.5 between our simulation results and the experimental data of Herzhaft &
Guazzelli (1999).

A.2. Effect of the grid resolution

The effects of the grid resolution (i.e. number of Fourier modes) on the sedimentation
statistics were also investigated. The results of this study are summarized in table 3,
which reports velocity statistics obtained using three different grid resolutions. Note
that in the method described in §§ 2.1.2 and 2.1.3, an increase in the number of Fourier
modes also results in the reduction of the extent of the force assignment function,
so that in the limit of an infinite number of modes the exact solution for a point
force (Dirac delta function) should be recovered. As shown in table 3, the effects of
the grid resolution on the mean sedimentation velocity are negligible. The velocity
fluctuations, however, are affected more strongly, and are observed to decrease as the
number of modes increases; significant errors can be expected using very coarse grids.
In the simulations described in this paper, we typically used of the order of 32 modes
in the horizontal directions and 128 modes in the vertical direction.
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